Thin/Thick Disk

The GALAH Survey: Stellar streams and how stellar velocity distributions vary with Galactic longitude, hemisphere and metallicity

Using GALAH survey data of nearby stars, we look at how structure in the planar (u,v) velocity distribution depends on metallicity and on viewing direction within the Galaxy. In nearby stars, with distance d < 1 kpc, the Hercules stream is most strongly seen in higher metallicity stars [Fe/H] > 0.2. The Hercules stream peak v value depends on viewed galactic longitude, which we interpret as due to the gap between the stellar stream and more circular orbits being associated with a specific angular momentum value of about 1640 km/s kpc.

Description for the general public: 

We look at distributions of stars from regions that are near the Sun but seen in different directions on the sky. We find that there are differences in the distributions of stellar velocities.

The GALAH Survey: Separating the thin and thick disks

Almost all spiral galaxies have a second disk component, the thick disk, in addition to the thin disk which defines their disk structure. Thick disks are believed to be ancient structures that predates the formation of the thin disks, but how they fit in to the overall picture of galaxy formation remains unknown. Although our Galaxy has a thick disk, the properties of this ancient component are not yet well determined.

The Long-term Evolution of the Galactic Disk Traced by Dissolving Star Clusters

The Galactic disk retains vast amount of information about how it came to be and how it evolved over cosmic time. However, we know very little about the secular processes associated with disk evolution. One major uncertainty is the extent to which stars migrate radially through the disk, thereby washing out signatures of their past (e.g., birth sites). Recent theoretical work finds that such "blurring" of the disk can be important if spiral arms are transient phenomena. Here we describe an experiment to determine the importance of diffusion from the Solar circle with cosmic time.

Galaxy Genesis - Unravelling the Epoch of Dissipation in the Early Disk

How did the Galactic disk form and can the sequence of events ever be unravelled from the vast stellar inventory? This will require that some of the residual inhomogeneities from prehistory escaped the dissipative process at an early stage. Fossil hunting to date has concentrated mostly on the stellar halo, but a key source of information will be the thick disk. This is believed to be a `snap frozen' relic which formed during or shortly after the last major epoch of dissipation, or it may have formed from infalling systems early in the life of the Galaxy.

Syndicate content